

Buccal Cavity Patches

Jatan Chauhan¹, Shyam Patel², Ritika Gajre³ ^{1,2}Bachelor of pharmacy, ITM (SLS) Baroda University ³Assistant Professor Quality Assurance, ITM (SLS) Baroda University

Submitted: 05-02-2023

Accepted: 20-02-2023

ABSTRACT: - Buccal Patches are the type of drug formulation that has normally a different course of administration through the buccal mucosa for drug delivery. The product is placed between upper gingiva (gums) and cheek to treat local and systemic conditions. Buccal bio adhesive films, releasing topical drugs in the oral cavity at a slow and predetermined rate, provide distinct advantages over traditional dosage forms for treatment of many diseases. Buccal patch has good accessibility to the membranes that line the oral cavity.Smart materials such as stimuli-responsive hydrogels, liposomebased patches, polymeric micelles, etc. play a vital role in the development of these drug delivery systems by their efficient carrier capacity, prolonging the residence time of the drug at the site of absorption, improved drug bioavailability, reduced dosing frequency and improved patience compliance. There are different designs and manufacturing methods such as electrospinning, electro spraving and 3D printing techniques which are considered as novel and efficient methods for preparation of buccal patches with some unique characteristics than traditional approaches such as solvent casting. These patches tend to help drug enter directly into the systemic circulation escaping hepatic first pass metabolism. This type of drug delivery method is considered useful for elevating the bioavailability of drugs. This review is a thorough study to apprehend the procedures involved in assessment of buccal patches and the modern approach towards this type of drug delivery. This article intends to analyze the overall

profile of Buccal Patches and scope of future advances.

Keywords: Buccal patches, Electrospinning, Electrospraying, 3D printing, Bioavailability.

I. INTRODUCTION

1.1 Buccal drug delivery:

Bioadhesive drug delivery formulations were introduced in1947 when gum tragacanth was mixed with dental adhesivepowder to apply penicillin to the oral mucosa.In recentyears delivery of therapeutic agents via Mucoadhesive drugdelivery system has become highly interesting. Certaindrugs have lack of efficacy due to decreasedbioavailability, GI intolerance, unpredictable and erraticabsorption, or presystemic elimination of other potentialroute for administration. The recent development in thedrug delivery has intensified the investigation of mucosaldrug delivery. Such route includes oral, buccal, ocular,nasal and pulmonary etc^{[52][53]}. The pharmaceutical industry routes pharmaceutical industry has engendered considerable interest making it a major participant in the healthcare industry. The advances and progress made by pharmaceutical industry have greatly contributed in terms of treatment of disease, thereby enhancing the quality of life Transmucosal routes of drug delivery which comprise of the mucosal linings of the nasal, rectal, vaginal, ocular, and oral cavity offer excellent opportunities and potential advantages over peroral administration for systemic drug delivery^[1]

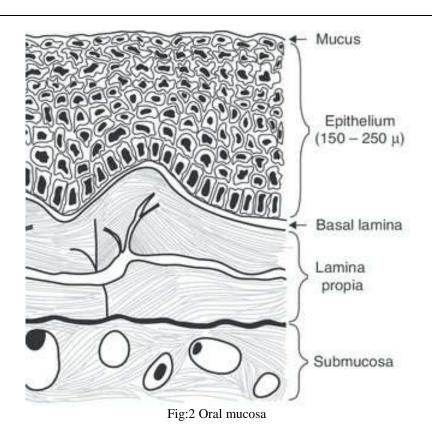

Gingivae (gums)	Upper lip
Gingivae (guins)	Superior labial
Palatine raphe	frenulum
Hard palate	Palatoglossal arch
Soft palate	Palatopharyngeal
	arch
Uvula Palatine tonsil	Posterior wall
Palatine tonsi	of oropharynx
	Tongue
Sublingual fold	Lingual frenulum
with openings of	Opening of
sublingual ducts	submandibular duct
Jun	Gingivae (gums)
Vestibule	
Lower lip-	Inferior labial
	frenulum

Fig:1 oral cavity

1.2 Mucoadhesive drug delivery system

Mucoadhesive drug delivery systems offer benefits over conventional delivery methods in terms of extended residence time of the drug at the site of application, a relatively large permeability of the mucus membranes that allow rapid uptake of a drug into the systemic circulation, and enhanced bioavailability of therapeutic agents resulting from the avoidance of some of the body's natural defence mechanisms.^[2] Mucoadhesion, defined as the ability to adhere to the mucus gel layer, is a key element in the design of these drug delivery systems. Buccal mucosa is an attractive route for systemicdelivery of drugs since it is relatively permeable, with rich blood supply The problems such as high first-pass metabolism and drug degradation in the harsh gastrointestinal environment can be circumvented by administering the drug via the buccal route and, buccal drug absorption can be promptly terminated in case of toxicity by removing the dosage form from the buccal cavity.

1.2.1 Structure of Oral Mucosa:

The oral mucosa is comprised of squamous stratified (layered) epithelium, basement

membrane, the lamina propria and submucosa. It also contains many sensory receptors including the taste receptors of the tongue.^[3]

Oral cavity	Thickness (mm)	Surface area
membrane		(cm ²)
Buccal mucosa	500-600	5.2
Sublingual	100-200	26.5
mucosa		
Gingival mucosa	200	
Palatal	250	20.1

Table 1: Thickness and surface area of oral cavity

1.2.2 The mucoadhesive drug delivery system in the mucus membrane of oral cavity can be categorized into three delivery systems:^[11]

- Sublingual delivery
- Buccal delivery
- Local delivery

These oral sites provide the high blood supply for the greater absorption of drug with sufficient permeability. From these three sites of oral mucoadhesive drug delivery system, the buccal delivery is the most convenient site.

1.2.3ADVANTAGES OF MUCOADHESIVE BUCCAL DRUG DELIVERY SYSTEM^[10]

Mucoadhesive via buccal route offers following advantages: -

- Ease of drug administration and termination of drug action can be easily accomplished.
- Permits or retention of the drug to the specified area of oral cavity for extended period of time.
- Bypass hepatic first pass metabolism.
- Drugs with poor bioavailability owing to the high first pass metabolism can be administered conveniently.
- Ease of drug administration to unconscious patients.

Water content of saliva is being capable to ensure drug dissolution.

1.3 Structure and Design of Buccal Dosage Form: ^[3]

Buccal Dosage form can be of:

1.Matrix type: The buccal patch designed in a matrix configuration contains drug, adhesive, and additives mixed together.

2. Reservoir type: The buccal patch designed in a reservoir system contains a cavity for the drug and additives separate from the adhesive. An impermeable backing is applied to control the direction of drug delivery; to reduce patch deformation and disintegration while in the mouth; and to prevent drug loss.

Fig. 3: Buccalpatch designed for bidirectional drug

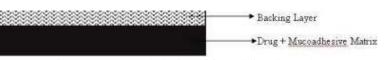


Fig. 4: Buccal patch designed for unidirectional drug

1.3.1Types of Buccal dosage form: **1. BUCCAL BIOADHESIVE TABLETS --**

Buccal bio adhesive tablets are dry dosage forms that are to be moistened prior to placing in contact with buccal mucosa. Double and multilayered tablets are already formulated using bio adhesive polymers and excipients. The two buccal bio adhesive tablets commercially available Bucco adhesive tablets in UK are Bucastem (Nitroglycerine) Suscard buccaP and (Prochloroperazine).^[10]

2. BUCCAL BIOADHESIVE PATCHES AND FILMS --

Buccal bio adhesive patches consists of two poly laminates or multi-layered thin film round or oval as consisting of basically of bio adhesive polymeric layer and impermeable backing layer to provide unidirectional flow of drug across buccal mucosa. Buccal bio adhesive films arc formulated by incorporating the drug in alcohol solution of bio adhesive polymer.^[10]

SEMISOLID

3. **PREPARATIONS(OINTMENTS and GELS)**

Bioadhesive gels or ointments have less patientacceptability than solid bio adhesive dosage forms, andmost of the dosage forms are used only for localized drugtherapy within the oral cavity. One of the original oralmucoadhesive delivery systems -"orabase"- consists offinely ground pectin, gelatin and NaCMC dispersed in apoly (ethylene) and a mineral oil gel base, which can bemaintained at its site of application for 15-150 mins.[54].

4. POWDERS

HPC and beclomethasone in powder form when sprayed on to the oral mucosa of rats, a significantincrease in the residence time relative to an oral solution is seen, and 2.5% of beclomethasone is retained on buccal mucosa for over 4 hrs^{[54].}

12	Table 2. List of permeation enhancers			
Permeation En	hancers			
Chelators	EDTA,			
	Citric acid,			
	Sodium salicylate,			
	Methoxy salicylates.			
Surfactants	Sodium lauryl sulphate,			
	Polyoxymethylene,			

Table 2: List of permeation enhancers^[8]

	Polyoxyethylene-9-laurylether,
	Polyoxythylene-20-cetylether,
	Benzalkonium chloride,
	23-lauryl ether,
	Cetylpyridinium chloride,
	Cetyltrimethyl ammonium bro-mide.
Bile salts	Sodium glycocholate,
	Sodium deoxycholate,
	Sodium taurocholate,
	Sodium glycodeoxycholate,
	Sodium taurodeoxycholate.

1.3.2An ideal polymer for Bucco adhesive drug delivery systems should have following Characteristics.^[4]

It should be inert and compatible with the environment.

• The polymer and its degradation products should be non-toxic absorbable from the mucous layer.

• It should adhere quickly to moist tissue surface and should possess some site specificity.

• The polymer must not decompose on storage or during the shelf life of the dosage form

The polymer should be easily available in the market and economical.

• It should allow easy incorporation of drug in to the formulation.

1.3.3Advantages of Buccal Patches: ^[4]

1. The oral mucosa has a rich blood supply. Drugs are absorbed from the oral cavity through the oral mucosa, and transported through the deep lingual or facial vein, internal jugular vein and brachiocephalic vein into the systemic circulation 5.

2. Buccal administration, the drug gains direct entry into the systemic circulation thereby bypassing the first pass effect. Contact with the digestive fluids of gastrointestinal tract is avoided which might be unsuitable for stability of many drugs like insulin or other proteins, peptides and steroids. In addition, the rate of drug absorption is not influenced by food or gastric emptying rate 6.

3. The area of buccal membrane is sufficiently large to allow a delivery system to be placed at different occasions, additionally; there are two areas of buccal membranes per mouth, which would allow buccal drug delivery systems to be placed, alternatively on the left and right buccal membranes. 4. Buccal patch has been well known for its good accessibility to the membranes that line the oral cavity, which makes application the oral cavity,

which makes application painless and with comfort.

5. Patients can control the period of administration or terminate delivery in case of emergencies. The buccal drug delivery systems easily administered into the buccal cavity. The novel buccal dosage forms exhibit better patient compliance.

1.3.4Limitation of buccal drug administration

There is certain limitation via drug administered through buccal route: -

- Drugs with ample dose are often difficult to be administered.
- Possibility of the patients to swallow the tablets being forgotten.
- Eating and drinking may be restricted till the end of drug release.
- This route is unacceptable for those drugs, which are unstable at pH of buccal environment.
- This route cannot administer drugs, which irritate the mucosa or have a bitter or unpleasant taste.
- Limited surface area is available for absorption

1.4Mechanism of bio adhesion

Bio adhesion is an interfacial phenomenon in which two materials, at least one of which is biological, are held together by means of interfacial forces. The attachment could be between an artificial material and biological substrate, such as adhesion between polymer and/or copolymer and a biological membrane. In case of polymer attached to the mucin layer of the mucosal tissue, the term

"mucoadhesion" is employed. "Bioadhesive" is defined as a substance that is capable of interacting with biological material and being retained on them or holding them together for extended period of t time. $^{\left[21\right] }$

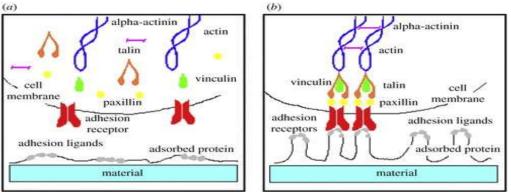


Fig. 5: Bio adhesive mechanism

1.4.1Characteristics of an Ideal Bucco adhesive System:^[10]

An ideal buccal adhesive system should possess the following characteristics:

1. Quick adherence to the buccal mucosa and sufficient mechanical strength.

- 2. Drug release in a controlled fashion.
- 3. Facilitates the rate and extent of drug absorption.

4. Should have good patient compliance.

5. Should not hinder normal functions such as talking, eating and drinking.

6. Should accomplish unidirectional release of drug towards the mucosa.

7. Should not aid in development of secondary infections such as dental caries.

8. Possess a wide margin of safety both locally and systemically.

9. Should have good resistance to the flushing action of saliva.

1.4.2Basic Components of Buccal Bioadhesive Drug Delivery System:^[4]

The basic components of buccal bio adhesive drug delivery system are:

- 1. Drug Substance
- 2. Bioadhesive polymers
- 3. Backing membrane
- 4. Penetration enhancer
- 5. Adhesive

1.5Advantages of Buccal Drug Delivery System:^[3]

Drug administration via buccal mucosa offers several distinct advantages:

1. The buccal mucosa is relatively permeable with a rich blood supply, robust in comparison to the other mucosal tissues.

2. Bypass the first-pass effect and non-exposure of the drugs to the gastrointestinal fluids.

3. Easy access to the membrane sites so that the delivery system can be applied, localized and removed easily.

4. Improve the performance of many drugs, as they are having prolonged contact time with the mucosa.5. High patient acceptance compared to other non-oral routes of drug administration.

6. Tolerance (in comparison with the nasal mucosa and skin) to potential sensitizers.

7. Increased residence time combined with controlled API release may lead to lower administration frequency.

8. Additionally significant cost reductions may be achieved and dose-related side effects may be reduced due to API localization at the disease site.

9. As a result of adhesion and intimate contact, the formulation stays longer at the delivery site improving API bioavailability using lower API concentrations for disease treatment.

10. Harsh environmental factors that exist in oral delivery of a drug are circumvented by buccal drug delivery.

11. It offers a passive system of drug absorption and does not require any activation.

12. The presence of saliva ensures relatively large amount of water for drug dissolution unlike in case of rectal or transdermal routes.

1.6Disadvantages of Buccal Drug Delivery System:^[7]

The main challenges of buccal administration are:

form.

4. The hazard of choking by involuntarily swallowing the delivery system is a concern.

5. Swallowing of saliva can also potentially lead to

the loss of dissolved or suspended drug and

ultimately the involuntary removal of the dosage

1. Limited absorption area- the total surface area of the membranes of the oral cavity available for drug absorption is 170 cm2 of which ~50 cm2 represents non-keratinized tissues, including buccal membrane.

2. Barrier properties of the mucosa.

3. The continuous secretion of the saliva (0.5-2 l/day) leads to subsequent dilution of the drug.

SI Title Author name Year Description Ref no. ere nce nu mb er 1. Anroop B Nair Mucoadhesive 2020 Administration of 1 buccal film of almotriptan as an oral almotriptan therapy is largelylimited because of poor aqueous improve therapeutic solubility and delivery in rabbit low bioavailability. Buccal model films consist of mucoadhesive as well as film forming polymers. 2. 2018 2 Felipe pereiraes Manufacture and Buccal films consist of characterization mucoadhesive as well as of mucoadhesive film. buccal forming polymers film the based on pectin interaction between and gellan gum hydrophilic polymers is sufficient to obtain films cotaining triamannolone with adequate acetonide characteristics for use as drug release devices. 3. 2015 Banbar e al-dubai Formulation and 3 Oral bioavailability of evalution of acyclovir is limited, nano base drug primarily because of low delivery system permeability across the for the buccal gastrointesti-nal membrane. delivery of Acyclovirpolymeric acyclovir nanospheres were prepared by double emulsion solvent evaporation technique. Nanosphereswere embedded into buccoadhesive films comprising of different concentrations of polymers. Films were characterized for physico-mechanical properties, mucoadhesive strength, hydration, drug release and ex vivo

II. LITERATURE REVIEW Table 3 :Literature review

				permeation.	
4.	Waleed m khattab	Buccoadhesive delivery system for an anti- migraine drug: in vitro/ex vivo evalution	2013	Different dosage forms were developed based on this principle. Bucco-adhesive tablets of zolmitriptan represent an alternative delivery system to avoid hepatic first pass metabolism and provide prolonged and uniform drug	4
5.	Amanpreet kaur and gurpreet kaur	Mucoadhesive buccal patches based on interpolimar complexes of chitosan-pectin for delivery of carvedilol	2012	release. The study was designed to develop bio adhesive patches of carvedilol hydrochloride using chitosan (CH) and pectin (PE) interpolymer complexes and to systematically evaluate they're in vitroand in vivoperformancesinterpoly mer complexes bio adhesive patches of carvedilol hydrochloride was formulated. The bio adhesive patches were displaying sufficient bio adhesive strength and in vitro drug release.	5
6.	Mohammed jafar and sadath ali	Development and evalution of meloxicam solid dispersion loaded buccal patches	2011	Meloxicam, a non-steroidal anti-inflammatory drug is widely used in the treatment of rheumatoid arthritis, ankylosing spondulytis and osteoarthritis. A good in- vitro in-vivo correlation was observed in MSP1 patch. All solid dispersion loaded buccal patches showed excellent stability under tested conditions.	6
7.	Dennis douroumis	Controlled released from directly compressible thothylline buccal tablet	2012	Buccal adhesive formulations were developed using a water soluble resin with various combinations of mucoadhesive polymers. The prepared theophylline tablets were evaluated for tensile strength, swelling capacity and ex vivo	7

				mucoadhesion performance	
8.	Maria immalolata la rotunda	Cyclodextrin- containing poly(ethyleneoxi de) tablet for the delivery of poorly soluble drugs: potentional buccal delivery system	2006	Cyclodextrins are responsible for an increase in the erosion rate of the tablet and an improved dissolution of the drug inside the polymeric matrix.	8
9.	Noha a nafee, fatama a ismail	Mucoadhesive buccal patches of miconazole nitrate: in vitro / in vivo performance and effect of ageing	2003	Mucoadhesive patches containing miconazole nitrate using anionic (SCMC), cationic (chitosan) and non-ionic (PVA, HEC, HPMC) polymers showed satisfactory mucoadhesive characteristics.	9
10.	Noha adel nafee,Fatma Ahmed Ismail	Design and characteriza of mucoadhesve buccal patches containing cetylpyridinium chloride	2003	The non-ionic polymer, PVA, showed good mucoadhesive and swelling characteristics. Medicated PVA patches maintained a satisfactory residence time in the buccal cavity and ensured zero-order release of the drug over relatively long periods (7 h), which made them good candidates for stability studies.	10
11.	M juj m, M. Beirevi-Laan , S. Bengez	Novel cyclodextrin based film formulation intend for buccal delivery of atenolol	2009	Iincorporation of atenolol in the form of an inclusion complex into hydrophilic films may be an appropriate strategy to prepare a suitable formulation for buccal drug delivery. Atenolol formed a stabile inclusion complex with RAMEB in solution and in solid state.	11
12.	Nina langoth,Andreas Bernkop- Schnürch	Development of buccal drug delivery system based on thiolated polymer	2003	Thiolated PCP increased the stability of the synthetic substrate for aminopeptidase N-leu-pnitroanilide and the model drug leucin- enkephalin against enzymatic degradation on buccal mucosa.	12

15. R. Novel buccal film: and buccal film: and buccal patches buc	13.	K Chandra sekhar	Transbuccal	2008	Buccal patches were	13
Identify added to 20 ml of distilled water and allowed to stand for 6 hr to swell. Propylene glycol and CPM were disolved in 5 ml of distilled water and added to the polymer solution.14.Madgalin tarai, dr. H lahlenmawiaNovel , buco- compatible sinvastatin buccal film: an integrative study of the effect of formulation variables2013 The developed films were found to be bucco- compatible and formulation variables were observed to influence physico- mechanical as well as drug permeation characteristics of film.15.R. venkatalakshmi, Yajaman Sudhakar , Madhuchudana Chetty C, Sašikala C and Mohan Varma MBuccal drug using adhesive patches2012 The polymers which are insoluble in saliva or water can be used as efficient matrix systems through which rate of release of drug can be controlled as desired.16.Pradeep kumar kothiyalBuccal patch: a review2013Buccal drug absorption of the nonionized species, a process governed primarily by a concentration gradient, through the intercellular spaces of the epithelium.1617.Shalini Mishra,G. kothiyalA review article: recent approaches in buccal patch2012 the mucosa is well supplied in the gastrointestinal tract are avoided. The area is wellsuide for a retentive device and appears to b acceptable to the patient.1718.Mohammad umar an advancedBuccal patches: an advanced2017 thuencos abardas fave the patient.18		,K. V. S. Naidu(et	delivery of chlorpheniramin e maleate from mucoadhesive		prepared using solvent casting technique with HEC as polymer and propylene glycol as	
IdealMadgalin trani, dr.Novel trani, dr.Novel trani, compatible sinvastatin buccal film: an integrative study of the effect of formulation variables2013 the developed films were found to be bucco- compatible and formulation variables were observed to influence physico- mechanical as well as drug 			buccal patches		added to 20 ml of distilled water and allowed to stand for 6 hr to swell. Propylene	
dr.Hcompatible sinvastatin buccal film: an integrative study of the effect of formulation variablesfound to be bucco- 					dissolved in 5 ml of distilled water and added to the polymer	
venkatalakshmi, Yajaman Sudhakar Adhuchudana Chetty C, Sasikala C and 	14.	dr. H .	compatible simvastatin buccal film: an integrative study of the effect of formulation	2013	found to be bucco- compatible and formulation variables were observed to influence physico- mechanical as well as drug permeation characteristics of	14
koyi and Arshad bashir khanreviewoccurs by passive diffusion of the nonionized species, a process governed primarily by a concentration gradient, through the intercellular spaces of the epithelium.17.Shalini Mishra,G. kumar and P. kothiyalA review article: recent approaches in buccal patch2012The mucosa is well supplied lymphatic drainage and first-pass metabolism in the liver and pre-systemic elimination in thegastrointestinal tract are avoided. The area is wellsuited for a retentive device and appears to be acceptable to the patient.18.Mohammad umar javaid and safwanBuccal patches: an advanced2017buccal patches have numerous advantages above	15.	venkatalakshmi , Yajaman Sudhakar , Madhuchudana Chetty C., Sasikala C and	using adhesive polymeric	2012	insoluble in saliva or water can be used as efficient matrix systems through which rate of release of drug	15
kumar and P. kothiyalrecent approaches in buccal patchwith both vascular and lymphatic drainage and first-pass metabolism in the liver and pre-systemic elimination in thegastrointestinal tract are avoided. The area is wellsuited for a retentive device and appears to be acceptable to the patient.18.Mohammad umar javaid and safwanBuccal patches: an advanced2017buccal patches have numerous advantages above18	16.	koyi and Arshad	-	2013	occurs by passive diffusion of the nonionized species, a process governed primarily by a concentration gradient, through the intercellular	16
javaid and safwan an advanced numerous advantages above		kumar and P. kothiyal	recent approaches in buccal patch		The mucosa is well supplied with both vascular and lymphatic drainage and first-pass metabolism in the liver and pre-systemic elimination in thegastrointestinal tract are avoided. The area is wellsuited for a retentive device and appears to be acceptable to the patient.	
	18.	javaid and safwan	an advanced	2017	numerous advantages above	18

10		dosage delivery- a review	2010	delivery system. The mucosa is well supplied with both vascular and lymphatic drainage and evading first-pass metabolism. Buccal drug delivery is an encouraging area for continued research with the purpose of systemic delivery of orally inefficient drugs.	10
19.	Punitha s and girish y	Polymers in mucoadhesive buccal drug delivery system- a review	2010	Buccal adhesive systems offer innumerable advantages in terms of accessibility, administration and withdraw-al, retentivity, low enzymatic activity, economy and high patient compliance.	19
20.	a. puratchikody, Prasanth V.V, Sam T. Mathew, Ashok Kumar B	Buccal drug delivery: past,present and future- a review	2011	methods of drug release through trans-mucosal and transdermal methods would be of great significance, as by such routes, the pain factor associated with parenteral routes of drug administration can be totally eliminated.	20
21.	Shrivastava namita and monga munish garg	Current status of buccal drug delivery system- a review	2015	Buccal drug delivery is a promising area for continued research with the aim of systemic delivery of orally inefficient drugs as well as a feasible and attractive alternative for non-invasive delivery of potent peptide and protein drug molecules.	21
22.	Singh r sharma d, garg r	Review on mucoadhesive drug delivery system special emphasis on buccal route	2017	Oral mucosal delivery offers a convenient way of dosing medication, not only to special populations with swallowing difficulties, but also to the general population. Mucoadhesive dosage forms provide prolonged contact time at the site of attachment, having high patient compliance and are economic as compare to other dosage forms.	22

23.	Osamah s	Buccal drug	2018	Local application to the	23
	malauah	delivery technologies for patient central treatment of radiation- indused xerostomia(dry mouth)		buccal mucosa would have the advantages of ease of administration, good bioavailability and fast onset of action. Therefore, reformulation of pilocarpine, or other salivary stimulants, as a buccal formulation would be a significant step in improved pharmacotherapy of radiation-induced xerostomia.	
24.	Surender Verma, Mahima Kaul	an overview of buccal drug delivery system	2011	The transmucosal route is becoming more and more popular because it does have significant advantages like avoidance of first pass metabolism in the liver and pre-systemic elimination in the gastrointestinal tract.	24
25.	Flavio Hernández-Castro	Randomized double-blind placebo- controlled trial of buccal misoprostolto reduce the need for additional uterotonic drugs during cesarean delivery	2016	Misoprostol is a synthetic prostaglandin E1 analog that has beendemonstrated to be an effective uterotonic agent in the third stage of labor and the immediate postpartum period. It can be administered by various routes including the poorly studied buccal-space pathway, where the dosage form is placed between gums and the inner lining of the cheek.	25
26.	Pragati Shakya, N. V. Satheesh Madhav	Evaluation of data polysaccharide (DPP)as a biomucoadhesen t and its comparison with various mucoadhesive polymer	2010	evaluate DPP as a Mucoadhesive polymer This biomaterial can serve as promising mucoadhesent for formulating the various transmucosal drug delivery systems	26
27.	Mamatha. Y, Prasanth V.V, Selvi Arunkumar, Sipai Altaf Bhai. M, Vandana Yadav	Buccal drug deliverya technical approach	2012	The buccal mucosa offers several advantages for controlled drug delivery for extended periods of time. The mucosa is well supplied with both vascular and lymphatic drainage and first-pass metabolism in the	27

				liver and pre-systemic elimination in the gastrointestinal tract are	
				avoided.	
28.	Pedro M. Castro,Patrícia Baptista	Combination of PLGA nanoparticles with mucoadhesive guar-gum films for buccal delivery of antihypertensive peptide	2018	Peptide-loaded nanoparticles, prepared in the scope of a factorial design, were tested in triplicate. A buccal delivery system based on the combination of previously optimized guar-gum films and PLGA nanoparticles was developed for the first time for the antihypertensive peptide	28
29.	Siok Yee Chan, Choon Fu Goh	Rice starch thin films as a potential buccal delivery system: Effect of plasticiser and drug loading on drug release profile	2019	The impact of the type of plasticiser on the properties of rice films is indicated by the water content, swelling index and drug release profile.	29
30.	Juliana Souza Ribeiro Costa, Karen de Oliveira Cruvinel a, Laura Oliveira- Nascimento	A mini-review on drug delivery through wafer technology: Formulation and manufacturing of buccal and oral lyophilizates	2019	Freeze-dried wafers can provide immediate or sustained delivery of APIs for local or systemic action. These wafers allow for ease of administration, protection against mechanical removal, and high drug loading	30
31.	Susmit Sneha	CURCUMIN - A NOVEL AYURVEDIC TREATMENT FOR ORAL LICHEN PLANUS	2017	The Curcumin was found to be safe at the prescribed dose and efficacious in controlling the signs and symptoms of OLP. It can be used as an alternative to the standard corticosteroid therapy in the management of OLP and thus alleviate the need for drugs with more serious adversities including corticosteroids.	31
32.	Jinsong Hao and Paul W. S. Heng	Buccal Delivery Systems	2003	The oral cavity is an attractive site for drug delivery due to ease of administration and avoidance of possible drug degradation in	32

				gastrointestinal tract and	
				first-pass	
				Metabolism.	
22	A 1 1 A 1 1 .	D 1	0016		22
33.	Alaadin Alayoubi,	Development of	2016	Four films with different	33
	Lindsay Haynes,	a fast dissolving		polymer contents were	
	Hemlata Patil	film of		evaluated in thisstudy. The	
		Epinephrine		formulation with the highest	
		hydrochloride as		concentration of the	
		a		polymer Lycoat formed	
		potentialanaphyl		smooth and clear film. The	
		actic treatment		optimized formulation	
		for pediatrics		showed good mechanical	
				properties attaining high	
				level of flexibility, thickness	
				uniformity and rapid	
				disintegration and	
				dissolution time.	
34.	Ana Camila	Development	2017	buccal administration of	34
	Marques, Ana	and		lipid nanoparticles. It was	
	Isabel Rocha,	characterization		also possible to demonstrate	
	Paula Leal	of mucoadhesive		the ability of NLC to	
		buccal gels		promote a sustained release	
		containing lipid		of drug, when incorporated	
		nanoparticles of		in hydrogels. This fact	
		ibuprofen		evidences the importance of	
				develop a mucoadhesive	
				system for buccal	
				administration of lipid	
				nanoparticles.	
35.	Georgios K.	Unidirectional	2019	The presence of chitosan	35
	Eleftheriadis	drug release		affected theex vivo	
		from 3D printed		performance of formulated	
		mucoadhesive		films, demonstrating	
		buccal films		enhanced mucoadhesion and	
		using FDM		permeation properties. The	
		technology: In		overall study confirmed the	
		vitro and ex vivo		hypothesis of 3D printing	
		evaluation		exploitation toward	
				fabrication of oromucosal	
				buccal dosage forms.	
36.	Peeush Singhal,	Formulation and	2010	mucoadhesive buccal patch	36
	Gajendra Singh	Evaluation of		containing 280mg HPMC	
	Jadoun	Buccal Patches		and 70mg Eudragit RL-100	
		of Terbutaline		produced buccal patches	
		Sulphate		having good mucoadhesive	
				strength and 96.89% drug	
				release in 12 hr.	
37.	Paolo Giunchedi,	Formulation and	2002	Buccal tablets were	37
57.	Claudia Juliano	in vivo	2002	prepared by mixing and	57
	Cluster Fullullo	evaluation of		tabletting drug-loaded	
		chlorhexidine		microspheres belonging to	
		buccal		batch A with mannitol and	
		tabletsprepared		saccharine or with	
		using drug-		mannitol, saccharine and	
		using urug-		manniton, saccharme allu	

		loaded chitosan microspheres		sodium alginate .	
38.	S.Velmurugan,B. Deepika, K.Nagaraju, Sundar Vinushitha	Formulation and in-vitro Evaluation of Buccal Tablets of Piroxicam	2010	Development of bioadhesive buccal drug delivery of piroxicam is one of the alternative routes of administration to avoid high gastric irritation and sustain release.	38
39.	Anne Mette Handler, Eva Marxen, Jette Jacobsen, Christian Janfelt	Visualization of the penetration modifying mechanism of laurocapram by Mass Spectrometry Imaging in buccal drug delivery	2019	the penetration of codeine through the buccal mucosa was not affected by the pre- treatment of laurocapram observed in MALDI images of the codeine-treated buccal mucosa.	39
40.	Isaac Ayensu, John C. Mitchel	Development and physico- mechanical characterisation of lyophilised chitosan wafers as potential protein drug delivery systems via the buccal mucosa	201	On the basis of characteristic performance and structural integrity after lyophilisation, the nondrug-loaded wafer 'formulation B' containing 6.5 mg each of plasticizer and cryoprotectant was the formulation of choice for drug loading and drug dissolution	40
41.	A. Jaipal, M.M. Pandey, S.Y. Charde, P.P. Raut, K.V. Prasanth, R.G. Prasad	Effect of HPMC and Mannitol on Drug Release and Bioadhesion Behavior on Buccal Discs of Buspirone Hydrochloride: In-vitro and In- vivo Pharmacokinetic Studies	2011	Effect of mannitol and HPMC on drug release and bioadhesive behavior from the designed buccal discs was studied successfully using a 32 factorial design. It can be concluded that the drug release pattern can be changed by selection of appropriate levels of two factors viz HPMC and mannitol.	41
42.	Javier O Morales	Buccal delivery of small molecules and biologics: of mucoadhesive polymers, films, and nanoparticles	2017	Buccal delivery of macromolecules including peptides and proteins is one of the delivery routes less investigated compared to the oral or pulmonary routes. Successful approaches to formulating small molecules in biocompat- ible films involve solvent casting and so far to a lesser extent, hot melt extrusion and ink-jet	42

				printing.	
43.	V. De Caroa, G. Giandaliaa, M.G. Siragusaa	New prospective in treatment of Parkinson's disease: Studies on permeation of ropinirole through buccal mucosa	2012	The drug passively crosses the membrane and allows the achievement of therapeutic drug levels in plasma. Nevertheless, an initial lag time is observed but the input rate can be modulated by permeation enhancement using limonene or by application of electric fields.	43
44.	Viralkumar F. Patel	Modeling the oral cavity: In vitro and in vivo evaluations of buccal drug delivery systems	2012	Several dosage forms have been developed and explored to enable drug delivery through the oral mucosa and include liquids, semi-solids and sprays	44
45.	Muhammad Hanif, Muhammad Zaman & Vesh Chaurasiya	Polymers used in buccal film: a review	2014	Mucosal membrane of oral cavity allows high permeation to certain drugs having high blood perfusion. Drugs with poor bioavailability as well as with shorter half-life can be administered easily. Buccal films can release the topical drugs with sustained and controlled effects and advantageous over the traditional drug delivery systems that are used in the curement of various disease.	45
46.	Bazigha K. Abdul Rasool	In Vitro Release Study of Nystatin from Chitosan Buccal Gel	2010	chitosan polymer is a candidate gelling agent for development of nystatin gel which can be used successfully for eradication of fungal infections in oral cavity.	46
47.	Miguel Montenegro- Nicolini	Overview and Future Potential of Buccal Mucoadhesive Films as Drug Delivery Systems for Biologics	2016	developments in buccal mucoadhesive drug delivery systems for biologics could be directed to vaccines, peptides, or proteins. Novel formulations need to consider the chemical nature and physical structure of these materials to provide adequate alternatives for	47

				drug delivery.	
48.	Nazila Salamat- Miller, Montakarn Chittchang	The use of mucoadhesive polymers in buccal drug delivery	2005	Application of lectin and blectinomimeticsQ appears to be the most promising area of current research efforts aimed at the safe and effective delivery of drugs via the buccal mucosa	48
49.	Heleen Kraan, Hilde Vrieling , Cecil Czerkinsky ,Wim Jiskoot , Gideon Kersten , Jean-Pierre Amorij	Buccal and sublingual vaccine delivery	2014	Mucosal vaccine delivery in the mouth can be subdivided into sublingual and buccal delivery. Sublingual delivery occurs via the mucosa of the ventral surface of the tongue and the floor of the mouth under the tongue, whereas buccal delivery occurs via the buccal mucosa, which is located in the cheeks, the gums and the upper and lower inner lips.	49
50.	Hitoshi Shibuya, Masamune Takeda	Brachytherapy for Non- Metastatic Squamous CellCarcinoma of the Buccal Mucosa: An Analysis offorty- five cases treated with permanent implants	2009	There are several reports on treatment results in buccal cancer after surgery, radiotherapy, chemotherapy or a combination of these modalities	50

III. FORMULATION AND METHOD OF PREPARATION **3.1Method of Preparation:**^[4]

Two methods are used to prepare adhesive patches.

1. Solvent casting:

In this method, all patch excipients including the drug co-dispersed in an organic solvent and coated onto a sheet of release liner. After solvent evaporation a thin layer of the protective backing material is laminated onto the sheet of coated release liner to form a laminate that is die-cut to form patches of the desired size and geometry

Туре	Polymer	Drugs Used	Manufacturing	Highlights
	Constituents		Method	
Controlled	Carbopol,	Lidocaine	Solvent casting	Free lidocaine
release	hydroxypropyl			and/or
	methylcellulose			microspheres
	(HPMC),			loaded patch
	poloxamer and			fabricated using
	compritol 888			HPMC/carbopo

|--|

				1 1 1
	ATO			l and poloxamer Lidocaine
				microspheres
				prepared from
				Compritol 888
				ATO employing
				spray
				congealing
				technique
				Change in
				formulation
				composition
				demonstrated to
				change the drug
				release
				mechanisms
				and able to
				provide either
				rapid, delayed
				or prolonged
				local anesthetic
				activity. ^[55]
Sustained	Sodium	Atenolol	Solvent casting	Patch prepared
release	alginate,			from sodium
	HPMC, sodium			alginate Ex vivo
	carboxymethyl			permeation
	cellulose			studies across
	(NaCMC)			goat buccal
	and carbopol			mucosa
	*			revealed
				70.17 _ 2.28%
				release over a
				period of 24 h
				with maximum
				permeation flux
				(30.83 _ 1.23
				_g/cm2/h) and
				minimum lag
				time (0.95 _
				0.22 h)
				Polymers used
				could provide
				sustained
				release of
				atenolol across
				porcine buccal
				mucosa for 24
				h. ^[56]
Modified	Xanthan gum,	Zolmitriptan	Solvent casting	Bilayer patch
release	polyvinyl	r	0	prepared from
	alcohol (PVA)			xanthan gum In
	and			vitro drug
	HPMC E-15			release studies
				showed rapid
				inter rupiu

				drug release;
				43.15% within
				followed by sustained
				release rate over
				5 h
				Incorporation of
				4% dimethyl sulfoxide
				demonstrated
				3.29-fold
				drug
				permeation,
				transported 29.10% of drug
				after 5 h. ^[57]
Immediate		Carbamazanina	Solvent easting	Water
release	HPMC,PVA, polyvinylpyrrol	Carbamazepine	Solvent casting	impermeable
Telease	idone and ethyl			polypropylene
	cellulose			backing layer
	centulose			provided
				unidirectional
				drug release
				Due to high
				water uptake,
				PEG 400
				containing
				batches showed
				maximum in
				vitro release
				and increased
				mucoadhesion
				Drug release was controlled
				by either diffusion or
				non-Fickian diffusion. ^[58]
Peptide	Chitagan	Insulin	Calment anoting	
-	Chitosan,	Insuin	Solvent casting	Viscous gel
delivery	choline and			made of choline
	geranic acid			and geranic acid
				sandwiched
				between two
				layers of chitosan
				Significant increase (7-
				`
				fold) in the cumulative
				insulin transport
				across the ex
				vivo porcine
				buccal tissue

	was
	demonstrated
	(~26% of
	loaded insulin)
	In vivo studies
	in rat buccal
	pouch lowered
	blood glucose
	levels
	up to 50% in a
	dose dependent
	manner Serum
	insulin
	plateaued after
	3 h for the
	duration of the
	study. ^[59]

2. Direct milling:

In this, patches are manufactured without the use of solvents. Drug and excipients are mechanically mixed by direct milling or by kneading, usually without the presence of any liquids. After the mixing process, the resultant material is rolled on a release liner until the desired thickness is achieved. The backing material is then laminated as previously described. While there are only minor or even no differences in patch performance between patches fabricated by the two processes, the solvent-free process is preferred because there is no possibility of residual solvents and no associated solvent-related health issues.

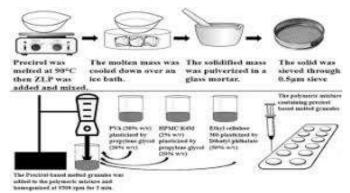


Fig:6 preparation of buccal patch

3.2 Composition of Buccal Patches:^[15]

A. Active ingredient.

B. **Polymers (adhesive layer):** Hydroxyethyl cellulose, hydroxypropyl cellulose, polyvinyl pyrrolidone, polyvinyl alcohol, Carbopol and other mucoadhesive polymers.

C. **Diluents:** Lactose DC is selected as diluent for its high aqueous solubility, its flavouring characteristics, and its physico-mechanical properties, which make it suitable for direct compression. Other example: microcrystalline starch and starch. D. Sweetening agents: Sucralose, aspartame, mannitol, etc.

E. **Flavouring agents:** Menthol, vanillin, clove oil, etc.

F. **Backing layer:** Ethyl cellulose, Poly vinyl alcohol etc.

G. Penetration enhancer: Cyano acrylate, etc.

H. **Plasticizers:** PEG-100, 400, propylene glycol, etc.

IV. EVALUATION PARAMETERS 4.1Evaluation of Buccal Patch

The following tests are used to evaluate the Buccal Patches:^[1]

Drug Content Uniformity, Ex-Vivo Residence Time, Thickness Testing, In-vitro drug permeation studies, In-vitro release studies, Moisture absorption studies, Surface pH study, Invitro bio adhesion measurement, In-vitro permeation through porcine buccal membrane, Stability in human saliva, FTIR studies etc water (15:85, v/v). The flow rate was 2.0 ml/min and the run time15 min. The retention time of TPL was 3.1 min. The TPL calibration curve, at concentrations varying from 5_g/ml to 100_g/ml,

1. Surface pH:

Buccal patches are left to swell for 2 hr on the surface of an agar plate. The surface pH is measured by means of a pH paper placed on the surface of the swollen patch.^[24]

2. Thickness measurements:

The thickness of each film is measured at five different locations (centre and four corners) using an electronic digital micrometre.^[24]

3. Swelling study:

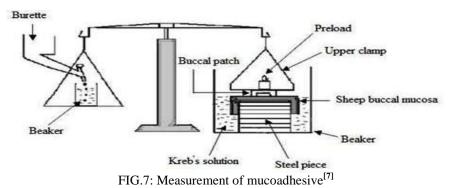
Buccal patches are weighed individually (designated as W1), and placed separately in 2% agar gel plates, incubated at $37^{\circ}C \pm 1^{\circ}C$, and examined for any physical changes. At regular 1-hour time intervals until 3 hours, patches are removed from the gel plates and excess surface water is removed carefully using the filter paper.

$$SI = (W2 - W1) \times 100$$
W1

4. Water absorption capacity test:

Circular Patches, with a surface area of 2.3 cm2 are allowed to swell on the surface of agar plates prepared in simulated saliva (2.38 g

Na2HPO4, 0.19 gKH2PO4, and 8 g NaCl per litter of distilled water adjusted with phosphoric acid to pH 6.7), and kept in an incubator maintained at $37^{\circ}C \pm 0.5^{\circ}C$. At various time intervals (0.25, 0.5, 1, 2, 3 and 4 hours), samples are weighed (wet weight) and then left to dry for 7 days in a desiccator over anhydrous calcium chloride at room temperature then the final constant weights are recorded. Water uptake (%) is calculated using the following equation


Water uptake (%) =
$$\frac{(W_w - W_f) \times 100}{W_f}$$

Where, Ww is the wet weight and Wf is the final weight. The swelling of each film is measured ^[27]

5. Ex-vivo bioadhesion test:

The fresh sheep mouth separated and washed with phosphate buffer (pH 6.8). A piece of gingival mucosa is tied in the open mouth of a glass vial, filled with phosphate buffer (pH 6.8). This glass vial is tightly fitted into a glass beaker filled with phosphate buffer (pH 6.8, $37^{\circ}C \pm 1^{\circ}C$) so it just touched the mucosal surface. The patch is stuck to the lower side of a rubber stopper with cyano acrylate adhesive. Two pans of the balance are balanced with a 5-g weight. The 5-g weight is removed from the left-hand side pan, which loaded the pan attached with the patch over the mucosa. The balance is kept in this position for 5 minutes of contact time. ^[30]

The water is added slowly at 100 drops/min to the right-hand side pan until the patch detached from the mucosal surface. The weight, in grams, required to detach the patch from the mucosal surface provided the measure of mucoadhesive strength.^[30]

6. In vitro Drug Release:

The United States Pharmacopeia (USP) XXIII-B rotating paddle method is used to study the drug release from the bilayered and multilayered patches. The dissolution medium consisted of phosphate buffer pH 6.8. The release is performed at $37^{\circ}C \pm 0.5^{\circ}C$, with a rotation speed of 50 rpm. The backing layer of buccal patch is attached to the glass disk with instant adhesive material. The disk is allocated to the bottom of the dissolution vessel. Samples (5 ml) are withdrawn at predetermined time intervals and replaced with

fresh medium. The samples filtered through Whatman filter paper and analyzed for drug content after appropriate dilution.^[15]

The in- vitro buccal permeation through the buccal mucosa (sheep and rabbit) is performed using Keshary-Chien/Franz type glass diffusion cell at $37^{\circ}C\pm0.2^{\circ}C$. Fresh buccal mucosa is mounted between the donor and receptor compartments. The buccal patch is placed with the core facing the mucosa and the compartments clamped together. The donor compartment is filled with buffer ^[24]

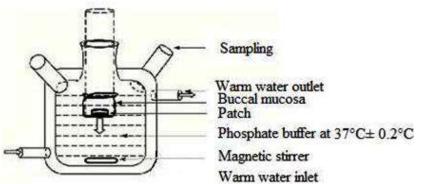


Fig.8: Schematic chematic diagram of franz diffusion cell for buccal patch^[7]

7. Permeation study of buccal patch:^[15]

The receptor compartment is filled with phosphate buffer pH 6.8, and the hydrodynamics in the receptor compartment is maintained by stirring with a magnetic bead at 50 rpm. Samples are withdrawn at predetermined time intervals and analyzed for drug content.

8. Ex-vivo Mucoadhesion Time:

mucoadhesion The ex-vivo time performed after application of the buccal patch on freshly cut buccal mucosa (sheep and rabbit). The fresh buccal mucosa is tied on the glass slide, and a mucoadhesive patch is wetted with 1 drop of phosphate buffer pH 6.8 and pasted to the buccal mucosa by applying a light force with a fingertip for 30 seconds. The glass slide is then put in the beaker, which is filled with 200 ml of the phosphate buffer pH 6.8, is kept at $37^{\circ}C \pm 1^{\circ}C$. After 2 minutes, a 50-rpm stirring rate is applied to simulate the buccal cavity environment, and patch adhesion is monitored for 12 hours. The time for changes in colour, shape, collapsing of the patch and drug content is noted. $^{\left[15\right] }$

9. Measurement of mechanical properties:

Mechanical properties of the films (patches) include tensile strength and elongation at break is evaluated using a tensile tester. Film strip with the dimensions of 60×10 mm and without any visual defects cut and positioned between two clamps separated by a distance of 3 cm. Clamps designed to secure the patch without crushing it during the test, the lower clamp held stationary and the strips are pulled apart by the upper clamp moving at a rate of 2 mm/sec until the strip break, the force and elongation of the film at the point when the trip break is recorded. ^[15]

V. SUMMARY

5.1Summary

Buccal delivery involves the administration of the desired drug through the buccal mucosal membrane lining of the oral cavity. Buccal patches are the type of drug formulation that has normally a different course of administration through the buccal mucosa for drug delivery.

Chapters	Summary
1.	Aim and objectives of buccal drug delivery system and their dosages
	forms.
2.	Provides introduction to Buccal drug delivery system, Mucoadhesive,
	Bioadhesive, polymers uses, differents types of dosages form, advantages
	, disadvantages, limitation, applications.
3.	Discusses past work on buccal drug delivery system, buccal patches,
	tablets, polymers, drugs in a review of the literature.
4.	Discusses in detail methods of preparation of buccal patechs.
5.	Brief discussion of evaluation parameters of drug loaded buccal patches.
6.	Explains summary, conclusion .
7.	Provides detailed references.

Table:5 summary of all chapters.

VI. CONCLUSION

6.1Conclusion

The buccal mucosa offers several advantages for controlled drug delivery for extended periods of time. The mucosa is well supplied with both vascular and lymphatic drainage and first-pass metabolism in the liver and presystemic elimination in the gastrointestinal tract are avoided. The area is well suited for a retentive device and appears to be acceptable to the patient. With the right dosage form design and formulation, the permeability and the local environment of the mucosa can be controlled and manipulated in order to accommodate drug permeation. Buccal drug delivery is a promising area for continued research with the aim of systemic delivery of orally inefficient drugs as well as a feasible and attractive alternative for non-invasive delivery of potent peptide and protein drug molecules. However, the need for safe and effective buccal permeation/absorption enhancers is a crucial component for a prospective future in the area of buccal drug delivery. Mucoadhesive buccal patches have been recently gained importance in drug delivery. The use of natural polymers is increasing in buccal patches formulation. A lot of work is still going on all around the world on mucoadhesive buccal patches using various natural polymer. This review is an effort to summarize the work done till date and to show the future pathway of mucoadhesive buccal patches preparation using natural polymer. The buccal mucosa offers several advantages over controlled drug delivery for extended periods of time. The mucosa is well supplied with both vascular and lymphatic drainage and first-pass metabolism in the liver and presystemic elimination in the gastrointestinal tract are avoided. The area is well suited for a retentive device and appears to be acceptable to the patient. With the right dosage form design and formulation,

the permeability and the local environment of the mucosa can be controlled and manipulated in order to accommodate drug permeation.

6.2Future aspects: -

- In mucoadhesive placebo buccal patches we can use any potent drugs which fulfil the criteria for buccal patch as drug delivery system.
- We can perform the dissolution of medicated mucoadhesive buccal patch for drug release profile studies.
- We can further perform the in-vivo studies for the prepared mucoadhesive buccal patches.
- We can perform the stability test for the prepared mucoadhesive buccal patches.

REFERENCES

- Anroop B. Nair a, Bandar E. Al-Dhubiab a, Jigar Shah, "Mucoadhesive buccal film of almotriptan improved therapeutic deliveryin rabbit model", Saudi Pharmaceutical Journal 28 (2020) 201– 209
- [2]. Flavio Hernández-Castro D. Norberto López-Serna, Emilio M. Treviño-Salinas," Randomized double-blind placebocontrolled trial of buccal misoprostol to reduce the need for additional uterotonic drugs during cesarean delivery", International Journal of Gynaecology and Obstetrics 132 (2016) 184–187
- [3]. Bandar E. Al-Dhubiaba,*, Anroop B. Naira, "Formulation and evaluation of nano based drug delivery system forthe buccal delivery of acyclovir", Colloids and Surfaces B: Biointerfaces 136 (2015) 878–884
- [4]. Waleed M. Khattab1*, Shadeed Gad2, Mohamed M. El-sayed1,2 and Mamdouh

M., "BUCCO-ADHESIVE DELIVERY SYSTEM FOR AN ANTI-MIGRAINE DRUG: IN-VITRO/EX-VIVO EVALUATION", World Journal of Pharmacy and Pharmaceutical Sciences,2(6),2013,1-26

- [5]. Amanpreet Kaur a, Gurpreet Kaur, "Mucoadhesive buccal patches based on interpolymer complexes of chitosanpectin for delivery of carvedilol", Saudi Pharmaceutical Journal (2012) 20, 21–27
- [6]. Mohammed Jafar and Sadath Ali, " Development and evaluation of meloxicam solid dispersion loaded buccal patches", Journal of applied pharmaceutical science,2011,1(3),77-82.
- [7]. Dennis Douroumis(et al 2010),
 "Controlled release from directly compressible theophylline buccal tablets",
 Colloids and Surfaces B: Biointerfaces 77 (2010) 227–233
- [8]. Maria Immacolata La Rotonda(et al 2006), "Cyclodextrin-containing poly(ethyleneoxide) tablets for the delivery of poorly soluble drugs: Potential as buccal delivery system", International Journal of Pharmaceutics 319 (2006) 63– 70
- [9]. Fatma A. Ismail(et al 2003), "Mucoadhesive buccal patches of miconazole nitrate: in vitro/in vivo performance and effect of ageing." International Journal of Pharmaceutics 264 (2003) 1–14
- [10]. Fatma Ahmed Ismall(et al 2003), "Design and characterization of mucoadhesive buccal patches containing cetylpyridinium chloride", Acta Pharm. 53 (2003) 199–212
- [11]. nolol M. Jug, M.(et al 2009), "Novel cyclodextrin-based film formulation intended for buccal delivery of atenolol", Drug Development and Industrial Pharmacy, 2009; 35(7): 796–807
- [12]. Nina Langoth(et al 2003), "Development of buccal drug delivery systems based on a thiolated polymer", International Journal of Pharmaceutics 252 (2003) 141–148
- [13]. K. Chandra Sekhar(et al 2008), "Transbuccal Delivery of Chlorpheniramine Maleate from Patches", Drug Mucoadhesive Buccal Delivery, 15:185-191, 2008
- [14]. Magdaline Tarai,Dr.H.Lalhlenmawia, "Novel bucco-compatible simavastatin

buccal film:An interative study of the effect of formulation variables." Journal of scientific and innovative research,2013 , 2(5),903-913.

- [15]. R. Venkatalakshmi(et al 2012), " BUCCAL DRUG DELIVERY USING ADHESIVE POLYMERIC PATCHE", IJPSR, 2012; Vol. 3(1): 35-41
- [16]. Pradeep Kumar Koyi and Arshad Bashir Khan, "BUCCAL PATCHES: A REVIEW", JJPSR, 2013; Vol. 4(1): 83-89
- [17]. Shalini Mishra(et al 2012), "A Review Article: Recent Approaches in Buccal Patches", THE PHARMA INNOVATIONVol. 1 No. 7 2012,1-9
- [18]. Muhammad Umar Javaid, Safwan Shahid, "Buccal Patches: An Advanced Route of Drug Dosage Delivery-A Review", International journal of pharmacy and pharmaceutical research,2017,10(3),1-12.
- [19]. Punitha S, Girish Y, "Polymers in mucoadhesive buccal drug delivery system – A review", Int. J. Res. Pharm. Sci. Vol-1, Issue-2, 170-186, 2010
- [20]. A. Puratchikody(et al 2011), "Buccal Drug Delivery: Past, Present and Future – A Review", International Journal of Drug Delivery 3 (2011) 171-184
- [21]. Srivastava Namita, Monga Munish Garg, "CURRENT STATUS OF BUCCAL DRUG DELIVERY SYSTEM: A REVIEW", Journal of Drug Delivery & Therapeutics. 2015; 5(1):34-40
- [22]. Singh R, Sharma Dand Garg R, "Review on Mucoadhesive Drug Delivery System with Special Emphasis on Buccal Route: An Important Tool in Designing of Novel Controlled Drug Delivery System for the Effective Delivery of Pharmaceuticals", J Dev Drugs 2017, 6:1
- [23]. Osamah S. Malallah(et al 2018), "Buccal drug delivery technologies for patientcentred treatment of radiation-induced xerostomia (dry mouth)",International Journal of Pharmaceutics,2018(18),1-26
- [24]. S.Velmurugan(et al 2011), "FORMULATION AND INVITRO EVALUATION OF BUCCAL TABLETS OF METOPROLOLTARTRATE", International Journal of Pharmacy and Pharmaceutical Sciences, Vol 3, Issue 2, 2011,1-8
- [25]. Wiwat Pichayakorn(et al 2019), "Lidocaine loaded gelatin/gelatinized

tapioca starch films for buccal delivery and the irritancy evaluation using chick chorioallantoic Membrane", Saudi Pharmaceutical Journal 27 (2019) 1085– 1095

- [26]. Mahima Kaul(et al 2011), "An overview on buccal drug delivery", IJPSR, 2011; Vol. 2(6): 1303-1321
- [27]. Mamatha. Y(et al 2012), "Buccal drug delivery a technical approach", Journal of Drug Delivery & Therapeutics; 2012, 2(2),1-8
- [28]. Mona M Abdelzaher, Gamal M El-Maghraby, "Formulation and evaluation of simvastatin buccal film", Journal of Applied Pharmaceutical Science Vol. 5 (04), pp. 070-077
- [29]. Felipe Pereira Fernandes(et al 2018), "Manufacture and Characterization of Mucoadhesive Buccal Films Based on Pectin and Gellan Gum Containing Triamcinolone Acetonide",Hindawi International Journal of Polymer Science,2018,1-10
- [30]. Joshua S. Boateng(et al 2012), "Development and physico-mechanical characterisation of lyophilised chitosan wafers as potential protein drug delivery systems via the buccal mucosa", Colloids and Surfaces B: Biointerfaces 91 (2012) 258–265
- [31]. Nilüfer TARIMCI(et al 2012), "BIOADHESIVE AND MECHANICAL PROPERTIES OF TRIAMCINOLONE ACETONIDE BUCCAL GELS",Turk J. Pharm. Sci. 9(1), 1-12, 2012
- [32]. Heleen Kraan(at el 2014), "Buccal and sublingual vaccine delivery", Journal of Controlled Release 190 (2014) 580–592
- [33]. Pedro M. Castro(et al 2018), "Combination of PLGA nanoparticles with mucoadhesive guar-gum films for buccal delivery of antihypertensive peptide",International Journal of Pharmaceutics,2018(18),1-25
- [34]. Choon Fu Goh(et al 2019), "Rice starch thin films as a potential buccal delivery system: Effect of plasticiser and drug loading on drug release profile", International Journal of Pharmaceutics 562 (2019) 203–211
- [35]. Laura Oliveira-Nascimento(et al 2019), "A mini-review on drug delivery through

wafer technology: Formulation and manufacturing of buccal and oral lyophilizates", Journal of Advanced Research 20 (2019) 33–41

- [36]. Susmit Sneha(et al 2017), "CURCUMIN -A NOVEL AYURVEDIC TREATMENT FOR ORAL LICHEN PLANUS", International Journal Of Current Medical And Pharmaceutical Research, Vol. 3, Issue, 03, pp.1507-1511
- [37]. Paul W. S. Heng, Jinsong Hao, "Buccal Delivery Systems", Drug Development and Industrial Pharmacy, Vol. 29, No. 8, pp. 821–832, 2003
- [38]. Alaadin Alayoubi(et al 2016), "Development of a fast dissolving film of epinephrine hydrochloride as a potential anaphylactic treatment for paediatrics", Pharmaceutical Development and Technology,2016,1-6
- [39]. Marilene Estanqueiro(et al 2017),
 "Development and characterization of mucoadhesive buccal gels containing lipid nanoparticles of ibuprofen", International Journal of Pharmaceutics 533 (2017) 455– 462
- [40]. Dimitrios G. Fatourosa(et al 2019), "Unidirectional drug release from 3D printed mucoadhesive buccal films using FDM technology: In vitro and ex vivo evaluation", European Journal of Pharmaceutics and Biopharmaceutics 144 (2019) 180–192
- [41]. Peeush Singhal(et al 2010), "Formulation and Evaluation of Buccal Patches of Terbutaline Sulphate", Int. J. Res. Pharm. Sci. Vol-1, Issue-4, 440-449, 2010
- [42]. Paolo Giunchedi(et al 2002), "Formulation and in vivo evaluation of chlorhexidine buccal tablets prepared using drug-loaded chitosan microspheres", European Journal of Pharmaceutics and Biopharmaceutics 53 (2002) 233–239
- [43]. S.Velmurugan(et al 2010), "Formulation and in-vitro Evaluation of Buccal Tablets of Piroxicam", International Journal of PharmTech Research, Vol.2, No.3, pp 1958-1968
- [44]. Christian Jan felt(et al 2019),
 "Visualization of the penetration modifying mechanism of laurocapram by Mass Spectrometry Imaging in buccal drug delivery", European Journal of

DOI: 10.35629/7781-080119621987 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1986

Pharmaceutical Sciences 127 (2019) 276–281

- [45]. Joshua S. Boateng(et al 2012),
 "Development and physico-mechanical characterisation of lyophilised chitosan wafers as potential protein drug delivery systems via the buccal mucosa", Colloids and Surfaces B: Bio interfaces91 (2012) 258–265
- [46]. Javier O Morales and David J Brayden, "Buccal delivery of small molecules and biologics: of mucoadhesive polymers, films, and nanoparticles", ScienceDirect, 2017, 36:22–28
- [47]. L.I. Giannolaa(et al 2012), "New prospective in treatment of Parkinson's disease: Studies on permeation of ropinirole through buccal mucosa", International Journal of Pharmaceutics 429 (2012) 78–83
- [48]. Viralkumar F. Patel(et al 2012), "Modeling the oral cavity: In vitro and in vivo evaluations of buccal drug delivery systems", Journal of Controlled Release 161 (2012) 746–756
- [49]. Muhammad Hanif (et al 2015), "Polymers used in buccal film: a review", Designed Monomers and Polymers,2015, Vol. 18, No. 2, 105–111
- [50]. Nina Langoth(et al 2006), "ThiolateChitosan's: Design and In Vivo Evaluation of a Mucoadhesive Buccal Peptide Drug Delivery System", Pharmaceutical Research, Vol. 23, No. 3, March 2006
- [51]. Hitoshi Shibuya(et al 2009), "Brachytherapy for Non-Metastatic Squamous Cell Carcinoma of the Buccal Mucosa: An Analysis of forty-five cases treated with permanent implants",m Oncologicu Vol. 32, No. 3. pp. 321-330
- [52]. Jain NK. Controlled and Novel Drug Delivery, 1st edition, publishedby CBS Publishers and Distributors, New Delhi. 1997; 52-81.
- [53]. Patel KV, Patel ND, Dodiya HD, Shelat PK. Buccal bioadhesivedrug delivery system: an overview. Ind. J. of Pharma. & Bio. Arch.2011; 2(2): 600-609.
- [54]. Shojaei Amir H, Buccal Mucosa as A Route For Systemic DrugDelivery: A Review; J Pharm Pharmaceut Sci(www.ualberta.ca/~csps) 1998;1 (1):15-30

- [55]. Cavallari, C.; Fini, A.; Ospitali, F. Mucoadhesivemultiarticulate patch for the intrabuccal controlled delivery of lidocaine. Eur. J.Pharm. BioPharma. 2013, 83, 405–414. [CrossRef]
- [56]. Adhikari, S.N.; Nayak, B.S.; Nayak, A.K.; Mohanty, B. Formulation, and evaluation of buccal patches for delivery of atenolol.AAPS Pharm SciTech2010, 11, 1038–1044. [CrossRef] [PubMed]
- [57]. Shiledar, R.R.; Tagalpallewar, A.A.; Kokare, C.R. Formulation and in vitro evaluation of xanthan gum-based bilayered mucoadhesivebuccal patches of zolmitriptan. Carbohydr. Polym. 2014, 101, 1234–1242. [CrossRef] [PubMed]
- [58]. Govindasamy, P.; Kesavan, B.R.; Narasimha, J.K. Formulation of unidirectional release buccal patches of carbamazepine andstudy of permeation through porcine buccal mucosa. Asian Pac. J. Trop. Biomed. **2013**, 3, 995–1002. [CrossRef]
- [59]. Vaidya, A.; Mitragotri, S. Ionic liquidmediated delivery of insulin to buccal mucosa. J. Control Release 2020, 327, 26– 34. [CrossRef][PubMed]